Freshwater Aquaculture
Geothermal Feasibility Study: Raft River, ID

Prepared by
Kevin Rafferty, PE
Klamath Falls, OR

For
Idaho Department of Water Resources
Under Contract #IDWR-CON000635

29 July 2004
Report Prepared for
Idaho Department of Water Resources
Energy Division

By
Kevin Rafferty
Klamath Falls, OR

Under Contract Number
DWR-CON000635
Evaluation of the Potential Cascading Use of Waste Geothermal Water for Fresh Water Aquaculture At the Proposed Raft River Power Production Site

Funds Provided by the US Department of Energy Cooperative Agreement No. DE-FG-51-02RO21387 M001

Costs associated with this publication are available from the Idaho Department of Water Resources in accordance with Section 60-202, Idaho Code. IDWR July 2004, PCA 32353/3
Table of Contents

1.0 Introduction ..1

2.0 Geothermal Resource ...2

3.0 Initial Facility Layout ...4

4.0 Heating Requirements
 4.1 Aquaculture ...5
 4.2 Ventilation ..6
 4.3 Building Space Heating 8

5.0 Heating Equipment Options
 5.1 Aquaculture Tank Heating 8
 5.2 Ventilation Air Heating 13
 5.3 Building Space Heating 15
 5.4 Combined Heating System 16

6.0 Annual Energy Requirements 19

7.0 Alternate Building Envelope
 7.1 Tank Heating ... 21
 7.2 Impact of Greenhouse 21
 7.3 Building Space Heating 22
 7.4 Ventilation ... 22
 7.5 Project Heating Load 23
 7.6 Equipment Costs ... 23
 7.7 Annual Energy Use 23

8.0 Potential Funding Sources 25

Appendix
 Equipment sources
Appendix A – Equipment sources

Aquaculture Tank Heating
- 5-tank heat exchanger 49NT40 AES
- temperature controller, electronic, immersion sensor 6XJ74 G
- control valve, hydronic zone, 3/4” 2E991 G
- transformer, 115/24v, 40VA 4X746 G

Ventilation Air Heating
- Hot water coil, 2 row, 8FPI, 24”x48”
- Heat exchanger, brazed plate,
 - Control valve, hydronic zone, 3/4” 2E991 G
 - Thermostat, remote bulb 2E834 G
 - Relay, transformer, 24V 2E852 G
 - Circulating pump, 1/4hp 5YN65 G
 - Expansion tank, 2.1 gal 2P672 G
 - Air vent, automatic 4A821 G

Building Space Heating
- Unit heaters, hot water, 87,100 Btuh nominal 5YH19 G
- Zone valve, 3/4” 2E991 G
- Thermostat, 5E266 G
- Relay/transformer 2E852 G

Main Loop
- Circulating pump, 66 gpm, 1 1/2 hp, 5YN73 G
- Self powered valve
- Airtrol fitting, 1 1/4” 4UN90 G
- Pressure reducing valve 4A822 G
- Expansion tank, 20 gal 2P671 G

Ventilation
- Fan, propeller, 30” 1/2hp 7CC20 G
- Fan guard 6D586 G
- Wall shutter 1CO55 G

Note: All equipment should be verified for suitability and compliance with final system design and all applicable codes.

AES – Aquatic Eco Systems www.aquaticeco.com